
6.2 Interfaces- List, Set

1) List Interface:

A List is an ordered Collection (sometimes called a sequence). Lists may

contain duplicate elements. In addition to the operations inherited from Collection,

the List interface includes operations for the following:

Positional access — manipulates elements based on their numerical position in

the list. This includes methods such as get, set, add, addAll, and remove.

Search — searches for a specified object in the list and returns its numerical

position. Search methods include indexOf and lastIndexOf.

Range-view — The sublist method performs arbitrary range operations on the

list.

The Java platform contains two general-

purpose List implementations. ArrayList, which is usually the better-performing

implementation, and LinkedList which offers better performance under certain

circumstances.

Example of List:

import java.util.List;

import java.util.ArrayList;

import java.util.LinkedList;

public class ListExample

{

 public static void main(String[] args)

{

 List<String> al = new ArrayList<String>();

al.add("BMW");

 al.add("Audi");

 al.add("BMW");

System.out.println("List Elements: ");

 System.out.print(al);

 }

}

Output:

List Elements:

[BMW, Audi, BMW]

https://docs.oracle.com/javase/8/docs/api/java/util/List.html
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html

2) Set Interface:

A Set is a Collection that cannot contain duplicate elements. It models the

mathematical set abstraction. The Set interface contains only methods inherited

from Collection and adds the restriction that duplicate elements are

prohibited. Set also adds a stronger contract on the behavior of

the equals and hashCode operations, allowing Set instances to be compared

meaningfully even if their implementation types differ. Two Set instances are equal if

they contain the same elements.

The Java platform contains three general -

purpose Set implementations: HashSet, TreeSet, and LinkedHashSet.

HashSet, which stores its elements in a hash table, is the best-performing

implementation; however it makes no guarantees concerning the order of iteration.

TreeSet, which stores its elements in a red-black tree, orders its elements based

on their values; it is substantially slower than HashSet.

LinkedHashSet, which is implemented as a hash table with a linked list running

through it, orders its elements based on the order in which they were inserted into the

set (insertion-order).

Example of Set:

import java.util.Set;

import java.util.HashSet;

import java.util.TreeSet;

public class SetExample

{

 public static void main(String args[])

{

 int count[] = {2, 4, 3, 5};

 Set<Integer> hset = new HashSet<Integer>();

 try

{

 for(int i = 0; i<4; i++)

{

 hset.add(count[i]);

 }

 System.out.println(hset);

 }

 catch(Exception e)

{

 e.printStackTrace();

 }

 }

}

Output:

[2, 4, 3, 5]

https://docs.oracle.com/javase/8/docs/api/java/util/Set.html
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashSet.html

Difference between List and Set in Java

Sr.
No.

Key List Set

1 Positional
access

The list provides
positional access of the
elements in the
collection.

Set doesn't provide
positional access to the
elements in the collection

2 Implementation Implementation of List
are ArrayList,
LinkedList, Vector
,Stack

Implementation of a set
interface is HashSet
and LinkedHashSet

3 Duplicate We can store the
duplicate elements in
the list.

We can’t store duplicate
elements in Set

4 Ordering List maintains insertion
order of elements in
the collection

Set doesn’t maintain any
order

5 Null Element The list can store
multiple null elements

Set can store only one null
element

6.3 Classes- ArrayList, Vector

1) ArrayList Class:

The ArrayList class is a resizable array, which can be found in
the java.util package.

The difference between a built-in array and an ArrayList in Java, is that the size
of an array cannot be modified (if you want to add or remove elements to/from an
array, you have to create a new one). While elements can be added and removed
from an ArrayList whenever you want. The syntax is also slightly different:
e.g:

Create an ArrayList object called cars that will store strings:

import java.util.ArrayList; // import the ArrayList class

ArrayList<String> cars = new ArrayList<String>(); // Create an ArrayList object

Add Items

The ArrayList class has many useful methods. For example, to add elements to
the ArrayList, use the add() method:

e.g:

https://www.w3schools.com/java/java_arrays.asp

import java.util.ArrayList;

public class arraylst
{
 public static void main(String[] args)

{
 ArrayList<String> cars = new ArrayList<String>();
 cars.add("Volvo");

 cars.add("BMW");
 cars.add("Ford");
 cars.add("Mazda");
 System.out.println(cars);
 }
}

Access an Item
To access an element in the ArrayList, use the get() method and refer to the

index number:
e.g:

cars.get(0);

Change an Item
To modify an element, use the set() method and refer to the index number:

e.g:
cars.set(0, "Opel");

Remove an Item
To remove an element, use the remove() method and refer to the index number:

e.g:
cars.remove(0);

To remove all the elements in the ArrayList, use the clear() method:

e.g:
cars.clear();

ArrayList Size
To find out how many elements an ArrayList have, use the size method:

e.g:
cars.size();

Loop Through an ArrayList
Loop through the elements of an ArrayList with a for loop, and use

the size() method to specify how many times the loop should run:

e.g:

public class arraylst

{
 public static void main(String[] args)

{
 ArrayList<String> cars = new ArrayList<String>();
 cars.add("Volvo");
 cars.add("BMW");
 cars.add("Ford");
 cars.add("Mazda");

for (int i = 0; i < cars.size(); i++)
{

 System.out.println(cars.get(i));
 }
 }
}

2) Vector Class:

Vector implements List Interface. Like ArrayList it also maintains insertion order
but it is rarely used in non-thread environment as it is synchronized and due to which
it gives poor performance in searching, adding, delete and update of its elements.

Three ways to create vector class object:
Method 1:

Vector vec = new Vector();

It creates an empty Vector with the default initial capacity of 10. It means the

Vector will be re-sized when the 11th elements needs to be inserted into the Vector.
Note: By default vector doubles its size. i.e. In this case the Vector size would remain
10 till 10 insertions and once we try to insert the 11th element It would become 20
(double of default capacity 10).

Method 2:
Syntax: Vector object= new Vector(int initialCapacity)

e.g: Vector vec = new Vector(3);

It will create a Vector of initial capacity of 3.

Method 3:
Syntax:

Vector object= new vector(int initialcapacity, capacityIncrement)
Example: Vector vec= new Vector(4, 6)

Here we have provided two arguments. The initial capacity is 4 and capacity

Increment is 6. It means upon insertion of 5th element the size would be 10 (4+6) and
on 11th insertion it would be 16(10+6).

Complete Example of Vector in Java:

import java.util.*;

public class VectorExample
{

public static void main(String args[])
{

 /* Vector of initial capacity(size) of 2 */
 Vector<String> vec = new Vector<String>(2);

 /* Adding elements to a vector*/
 vec.addElement("Apple");

 vec.addElement("Orange");
 vec.addElement("Mango");
 vec.addElement("Fig");

 /* check size and capacityIncrement*/
 System.out.println("Size is: "+vec.size());
 System.out.println("Default capacity increment is: "+vec.capacity());

 vec.addElement("fruit1");
 vec.addElement("fruit2");
 vec.addElement("fruit3");

 /*size and capacity Increment after two insertions*/
 System.out.println("Size after addition: "+vec.size());
 System.out.println("Capacity after increment is: "+vec.capacity());

 /*Display Vector elements*/
 Enumeration en = vec.elements();
 System.out.println("\nElements are:");
 while(en.hasMoreElements())
 {
 System.out.print(en.nextElement() + " ");
 }
 }
}
Output:
Size is: 4
Default capacity increment is: 4
Size after addition: 7
Capacity after increment is: 8

Elements are:
Apple Orange Mango Fig fruit1 fruit2 fruit3

